
CALL-EJ, 19(2), 125-138 
 

125 
 

Developing Web-based English Learning Applications: Principles and 
Practice 

 

Paul Raine (paul.raine@gmail.com) 
J. F. Oberlin University, Tokyo, Japan 

 
 
Abstract 
In the 21st century, there is a near ubiquity of web-connected devices amongst language 
learners, and the considerable success of mass market web-based language learning 
applications shows a strong demand for such tools. Where does this leave EFL educators 
wanting to tap into the global trend, and create their own innovative web applications for 
learners of English? Having established the global demand for web-based digital English 
learning tools, this paper discusses the platforms and languages that can be used by English 
educators themselves to create new online learning activities. The recent development of 
JavaScript as both a client-side and server-side language is discussed, and the possibility of 
integrating language learning web-apps with a range of powerful Application Programming 
Interfaces (APIs) is highlighted. “Lyric Learner”, a web applications developed by the author, 
is briefly examined, and a list of resources for those interested in learning to code is provided. 
In the second part of the paper, a range of theoretical underpinnings for language learning 
applications are considered, including structuralist, communicative, and interactional 
viewpoints. The argument is maintained that engaging and effective web applications can be 
created under each of these approaches to language pedagogy. The paper concludes with an 
invitation to English language educators to create their own web applications using sound 
theoretical principles and technological practices. 
 
Keywords: Computer Assisted Language Learning, Mobile Learning, Online Teaching & 
Learning, Web-Based Instruction 
 
 
INTRODUCTION 
 
The practice of English language teaching and learning has been greatly affected by the 
growth of the Internet since the early 1990s, and the subsequent explosion in the number of 
available mobile devices since the early 2000s. As of 2017, there are an estimated 3.8 billion 
global internet users (Internet World Stats, 2017), and 2.3 billion smartphone users 
(Statistica, 2018). China, the US, South Korea, Japan, and Brazil account for 65% of a $2.8 
billion global demand for digital English learning products (Adkins, 2016). Web-based 
Language Learning (WBLL) tools and resources are used autonomously by millions of 
English language learners, but are also prescribed by their teachers as part of a wide range of 



CALL-EJ, 19(2), 125-138 
 

126 
 

motivational and effective blended learning curricula (e.g. Bañados, 2006; Miyazoe & 
Anderson, 2010; Shih, 2011).  
 
There is now a range of very successful web-based language learning platforms, including 
the likes of Duolingo with 150 million users (Guliani, 2016), and Busuu with 70 million users 
(Salter, 2017). However, not every learner need can be satisfied by these mass market 
solutions. Sometimes learners require fine-tuned practice on specific aspects of language, or 
need to engage extensively with bespoke language content. Furthermore, grassroots 
technological innovation should be encouraged, not just as a breeding ground for the next 
great language learning tool or resource, but also as an avenue for experimentation and 
research. 
 
When it comes to designing or developing web applications, both practical and theoretical 
considerations need to be addressed. Practical matters include questions of which 
programming languages to use, and how to distribute the applications once they are ready to 
go live. Applications also need to be supported by sound pedagogical foundations, and 
informed by relevant theories of language learning. In this paper, structuralist, 
communicative, and interactional theories of language learning are discussed and evaluated 
with respect to their relevance to web applications. It is maintained that engaging and 
effective web applications can be created under all three approaches. 
 
 
PROGRAMMING LANGUAGES AND PLATFORMS 
 
Web-apps versus native apps 
 
When the iPhone was launched in 2007, it included just a small range of native apps, and it 
wasn’t possible for 3rd party developers to create their own native apps for iOS. It was Steve 
Jobs’ original intention for additional apps to be available via iOS Safari in the form of web-
apps (Jobs, 2007). Web-apps did not catch on at this time, and Apple quickly changed tack 
by launching a Software Development Kit (SDK) specifically for iOS. Native apps became 
popular with both developers and users, and there are now over 2.2 million native apps in the 
App Store for iOS devices (Statistica, 2017). 
 
However, the trend is now starting to swing back toward browser based web-apps, with some 
predicting that most apps will be delivered through the browser in the near future (Durkin, 
2016). The differences that once existed between native apps and web-apps, such as the range 
of device functions they could access, and their speed and reliability, are no longer so 
apparent. Cumulative additions and improvements to HTML5 and JavaScript have leveled 
the playing field in many respects, and it’s now possible to achieve “almost anything we want 
to accomplish” via applications that run in web browsers (Durkin, 2016).  
 



CALL-EJ, 19(2), 125-138 
 

127 
 

Another major advantage of web-apps over native apps is that they are device agnostic, i.e. 
they run on any device (mobile or desktop) with a modern web-browser, such as Google 
Chrome, Mozilla Firefox, or Safari. Whereas native apps usually need to be rewritten for 
each target device, which is a time consuming and costly process, web-apps can be written 
once and distributed to any platform with a modern browser. In addition, the programming 
languages required to create web-apps are typically “more familiar and easier-to-learn” 
(Godwin-Jones, 2011, p.5) than those required for native apps. This means that individuals 
who already have a basic knowledge of HTML, CSS and JavaScript can get started making 
web-apps relatively easily. 
 
The death of Adobe Flash 
 
Adobe Flash was once the predominant technology of interactive websites, and powered 
well-known language learning sites such as Livemocha (Clark & Gruba, 2010), which is now 
defunct (EdSurge, 2016). Almost 50% of sites utilized Flash in 2011, but usage drastically 
dropped to less than 10% in 2016 (Richter, 2016). In 2010, Flash was banned from the iOS 
platform by Steve Jobs due to being unreliable, inefficient, and proprietary (Jobs, 2010), and 
in 2017 Adobe themselves announced their intention to discontinue support for the 
technology by 2020 (Adobe, 2017). 
 
The rise of JavaScript 
 
Where Flash lost out, JavaScript has gained ground in a remarkable way. Once purely a 
client-side scripting language (see below), it can now be deployed both in the browser and 
on the server by utilizing open source server frameworks such as Node.js (Heller, 2017). It 
can even be used to create native desktop and mobile apps, using frameworks such as 
Electron and Cordova, respectively. The author has used Node.js to create real time web-
based vocabulary learning activities (Ono & Raine, 2016), and there are many other exciting 
potential applications of this technology for language pedagogy purposes. 
 
The importance of APIs 
 
An Application Programming Interface (API) is essentially a way to “plug your website into 
another” (Kiss, 2007), and allows much more sophisticated applications to be built more 
quickly and easily. APIs allow web applications to send data to servers provided by third 
parties. The servers then process the application’s data in some way before returning the 
results. There are over 12,000 APIs available via the web (Iyer & Subramaniam, 2015), 
including many that provide data useful for language teaching or learning. Macmillan, 
Oxford, and Merriam-Webster, for example, all offer access to their dictionary data via API, 
although they require you to sign up for an API key, and implement limits on how many 
requests your application can make within a certain timeframe. 
 
If an application requires a dictionary definition, it can send the relevant headword to the 
Merriam-Webster dictionary API, which will then return the matching definitions (Figure 1). 



CALL-EJ, 19(2), 125-138 
 

128 
 

Another example of an API which provides data suitable for language learning is the digital 
flashcard site Quizlet, which allows access to billions of term/definition pairs. Sets of these 
digital flashcards can be retrieved with either an ID number, or by searching through set 
names for specific keywords or phrases. 
 
 

 
Figure 1: XML data returned by the Merriam-Webster dictionary API (dictionaryapi.com) 
for the headword “oxymoron” 
 
The latest advances in Natural Language Processing (NLP), text-to-speech (TTS), and 
automatic speech recognition (ASR) are also accessible via API. Google Cloud offers 
advanced NLP functions via its Cloud Natural Language service, and speech recognition via 
its Cloud Speech API. The suitability of cloud-based ASR services for language learning has 
been recently examined (Daniels & Iwago, 2017) and Google’s Cloud Speech API was found 
particularly useful for administering online speaking tasks which allow for automated scoring 
and feedback. In relation to text-to-speech, a free TTS service that works on any device is 
available from Responsive Voice. Several studies have shown the utility of TTS for language 
learning and teaching purposes (e.g. Gonzales, 2007; Handley, 2009; Pellegrini, Costa & 
Trancoso, 2012).  



CALL-EJ, 19(2), 125-138 
 

129 
 

 
Server-side and client-side methodologies 
 
When it comes to developing applications for the web, there are two basic methodologies 
that must be understood: server-side and client-side. In server-side methodologies, the 
application which processes the data runs on the server using languages such as PHP, ASP, 
and, more recently, JavaScript. In client-side methodologies, the application runs within the 
browser using JavaScript. Many web-based applications use a combination of both server 
and client side methodologies.  
 
When a user opens their web browser (the “client”) and requests a web page via the Hypertext 
Transfer Protocol (HTTP) by typing in a Uniform Resource Locator (URL), the server 
delivers the page as a combination of resources, including HTML files, JavaScript files, CSS 
(cascading style sheet) files, image files, and audio files. (Figure 2). 
 

 
Figure 2: HTTP request and response process between client and server 
 
In general, HTML files define the structure of the web page, CSS files define the appearance, 
and JavaScript files define the logic. Most web pages also use images and sound to provide 
a rich user interface. A web application is a specific kind of web page that provides a similar 
functionality and user experience to traditional desktop applications. 
 
Web application example: Lyric Learner 
 
An example of an English learning web-app developed by the author, which uses both client-
side and server side methodologies, in addition to interacting with a database and APIs, is 
Lyric Learner. This app allows English learners to listen to and learn from a variety of 
different music videos. It requires users to input missing words using an onscreen keyboard 
that contains all the letters of the word in a scrambled order, in addition to some extra 
(“distractor”) letters (Figure 3). Its functionality is therefore similar to that provided by 
traditional cloze activities (e.g. Oiler & Conrad, 1971). 
 
Lyric Learner uses the YouTube IFrame Player API  to manipulate the video content, and 
retrieves song lyrics from a database using server-side scripting. It then uses client-side 



CALL-EJ, 19(2), 125-138 
 

130 
 

scripting to create and position all the user interface (UI) elements in the browser. Lyric 
Learner is just one example of the kind of web-based pedagogical tool that can be created for 
English language learners, and a huge number of other ideas are possible with a combination 
of client-side, server-side, and API-based methodologies. 
 

 
Figure 3: The “Lyric Learner” web application 
 
Learning to code 
 
There are numerous free online resources available for those who wish to learn how to code 
server-side or client-side web applications. The following resources are recommended by the 
author: 
 
• Learn Code the Hard Way 
• Team Tree House 
• Lrn 
• Code School 
• W3 Schools 
• Stack Overflow 

 
In terms of how long it takes to learn to code, some have suggested that the investment of 
time is comparable to that of acquiring conversational competence in a second language, i.e. 
about 500-700 hours (Orosz, 2015). However, the wide range of libraries (e.g. JQuery), 
frameworks (e.g. Bootstrap), APIs, and online support options are increasingly making 
complex and sophisticated applications much easier and quicker to develop and deploy. 



CALL-EJ, 19(2), 125-138 
 

131 
 

 
Having selected an appropriate platform and programming language for application 
development, coder-educators should carefully consider applicable language learning 
theories, both in the design and implementation of their tools. The next part of this paper 
discusses three major theoretical underpinnings to language learning application design. 
 
 
THEORETICAL UNDERPINNINGS OF LANGUAGE LEARNING 
APPLICATIONS 
 
When it comes to adopting sound pedagogical principles in designing CALL applications, it 
is useful to conceptualize three distinct views of language learning: the structuralist view, the 
communicative view, and the interactional view (Warschauer & Healey, 1998; Blake, 2013). 
Depending on the view adopted, the focus of the pedagogical endeavor changes. Although 
this trifurcated analysis of CALL paradigms has been criticized by some (e.g. Bax, 2002), it 
remains useful for understanding the different kinds of applications that can be created, and 
their effect on the user’s language knowledge and skill. 
 
From a structuralist viewpoint, the focus is on breaking down utterances into their constituent 
parts (phonemes, lexemes, clauses, etc.), and obtaining mastery over these parts in order to 
construct original utterances. In a communicative view of language, the focus is on conveying 
authentic meaning, obtaining mastery over the functions of language (apologizing, 
describing, inviting, etc.), and expressing oneself fluently without becoming too preoccupied 
with accuracy. In an interactional view of language, the focus is on building and maintaining 
social relations with one’s interlocutors, and using appropriate forms of language according 
to different kinds of social situations. 
 
Each of these views of language learning came in and out of vogue over the course of the 
20th century. Some claim that the interactional view, based on a sociocultural theory of 
language learning, is the most appropriate and efficacious for 21st century CALL 
applications (e.g. Blake, 2013). However, in this paper the argument is maintained that 
pedagogically motivational and effective applications can be created under all three views, 
each of which is discussed below. 
 
Structuralist applications 
 
From a programmatic perspective, it’s a relatively simple endeavor to produce applications 
which focus on breaking down and reconstructing the elements of language. Natural 
Language Processing (NLP) libraries, such as the Natural Language Toolkit and Google 
Cloud Natural Language, are very useful for this function. An example of a structuralist web-
app created by the author is Auto Cloze (Figure 4). Auto Cloze uses a part-of-speech (POS) 
tagger to identify, to an accuracy of over 96% (Giesbrecht & Evert, 2009), the POS 
categorizations of the words appearing in the selected text. It then removes the words which 



CALL-EJ, 19(2), 125-138 
 

132 
 

match the POS category selected by the user, and the user must reconstruct the text by 
choosing the correct word from a dropdown menu containing a list of words of the same type. 
 

 
Figure 4: The “Auto Cloze” web application 
 
The Auto Cloze web-app is further enhanced by integrating with the English Wikipedia via 
the MediaWiki API and also with captioned YouTube videos via the YouTube Data API. 
This allows users to select their own texts or videos from millions of choices, and thereby 
increases learner autonomy. 
 
Blake (2013, p.40) has argued that although form-focused ‘drill-and-practice’ type activities 
“should not constitute the driving concept behind a Web-based L2 curriculum”, they are 
nevertheless useful for students to acquire knowledge of new morphology and syntax. Others 
have highlighted the fact that computers are simply much more efficient than humans at 
generating structuralist type activities, thus making such activities readily available for 
deployment in the classroom without the need for extensive planning or preparation 
(Warschauer & Healey, 1998).  
 
The fact that the hugely popular Duolingo employs a variety of manipulative linguistic 
activities implies that such activities are in demand by language learners. Although we should 
not mistake the popularity of an approach for its efficacy, independent research on 
Duolingo’s methods seems to suggest that such activities are both in demand and effective 
(Vesselinov & Grego, 2012). Again, there are pragmatic reasons for adopting a structural 
approach for a mass market language learning website, including the fact that it’s a relatively 
trivial task to get a computer to chop up a sentence into its constituent parts to be presented 



CALL-EJ, 19(2), 125-138 
 

133 
 

to the learner for rearrangement. Users’ interactions with structuralist type applications can 
also be easily tracked and scored, with appropriate motivational or correctional feedback 
being displayed (Heift, 2004; Carey, 2004). 
 
Communicative applications 
 
Creating web applications that fulfill the precepts of the communicative paradigm requires a 
little more imagination and effort. One example created by the author is an app called Manga 
Maker (Figure 5). Manga Maker allows the user to create a dialogue between two characters, 
whose expressions and gestures can be changed. A choice of background environments is 
also provided. This application allows learners to practice using language in a functional-
notional sense (Finocchiaro & Brumfit, 1983), by first conceiving of the situation the two 
characters are in, and then generating suitable utterances for that situation. Follow up 
activities can include having the students print out their dialogues and then rehearse them 
together. 
 

 
Figure 5: The “Manga Maker” web-app 
  
Communicative CALL activities such as Manga Maker clearly go beyond simple 
manipulation of basic grammar forms. In requiring students to generate their own original 
conversations, they need an understanding of how the relationship between the characters, 
and the situation they are in, affects both what they say to each other and how they say it. 
Although many students struggle to make dialogues realistic initially, this problem is also 
faced by professional textbook writers (Nguyen & Ishitobi, 2012) and is therefore to be 
expected. Unnatural sounding conversations can be checked by the teacher and revised by 
the students and thereby capitalized on as an additional learning opportunity.  
 



CALL-EJ, 19(2), 125-138 
 

134 
 

Interactional applications 
 
The interactional view emphasizes the importance of developing sociocultural relationships 
with one’s interlocutors. In a CALL setting, this usually means utilizing the affordances of 
technology to bring about some form of Computer Mediated Communication (CMC) 
between learners and teachers, or between learners themselves. The mode of CMC can either 
be synchronous (SCMC), where communication occurs in ‘real time’, or asynchronous 
(ACMC), where there is a delay before receiving a response. An early example of SCMC on 
the Internet is Internet Relay Chat (IRC) which dates back to 1988 (Stenberg, 2011) and 
allows language learners to interact with others who are in the same ‘virtual space’ (Healey, 
2016). IRC has largely been superseded by more technologically advanced forms of SCMC, 
which feature both audio and video transmission. Modern examples include the likes of 
Skype, Facebook Messenger, and Google Hangouts. ACMC, on the other hand, is largely 
associated with e-mail (e.g. Gmail, Hotmail, Yahoo! Mail), bulletin boards (e.g. phpBB), and 
other tools which store messages on a server for later retrieval. 
 
In general, SCMC applications are more difficult to develop than ACMC applications, 
especially when it comes to transmitting live audio and video, which has significant 
implications for memory and bandwidth. In recent years, however, the technology has 
become available to achieve full SCMC functionality via the web browser, using a set of 
capabilities provided by WebRTC. The rise in real time live language tutoring services such 
as Okpanda and YourTutor has been powered by WebRTC technology. The prevalence of 
browser-based SCMC is expected to continue to increase over the next few years, with over 
2 billion potential users predicted by 2019 (Lumiaho, 2015).  
 
The author has experimented with SCMC functionality in an application that allowed learners 
to chat with each other in real time (Ono & Raine, 2016), but the tool lacked a suitable 
pedagogical framework and was not developed further at that time. It would be fruitful to 
pursue the development an SCMC application specifically for language learners that 
followed a principled framework (e.g. Hampel, 2006) that allows for a variety of multimodal 
communication channels, including audio, video, and virtual whiteboards. 
 
CMC is not the only possible way to use technology to deliver interactional language learning 
experiences to the user. Rapid technological improvements in Artificial Intelligence (AI), 
powered by Artificial Neural Networks (ANN), has made an increasing array of artificial 
interlocutors available to learners. The best known among these are Apple’s Siri, Google 
Assistant, Amazon’s Alexa, and Microsoft’s Cortana. Although none of these virtual 
assistants are designed specifically for teaching a language, they are able to have basic 
conversational interactions about an increasing array of topics, and have been used in English 
language classrooms with promising results (e.g. Moussalli & Cardoso, 2016; Underwood, 
2017). There has yet to emerge a fully conversational virtual assistant with a specific remit 
for teaching English as a second language. However, simpler “chat-bots” have been available 
online for many years. Rong Chang’s award-winning EFL chat-bot Tutor Mike, and general 
purpose chat-bots Jabberwacky and ALICE have been employed in EFL classrooms with 



CALL-EJ, 19(2), 125-138 
 

135 
 

positive results (e.g. Jia, 2004; Fryer & Carpenter, 2006; AlKhayat, 2017), although they are 
based on deprecated Flash technology, and are therefore incompatible with mobile devices. 
 
 
CONCLUSION 
 
There is a clear and increasing demand for web-based English language learning tools, and 
educators may soon be expected to be able to design and create such tools in addition to 
recommending and prescribing them to their students.  
 
In terms of theoretical underpinnings, the three main categories of CALL applications 
originally delineated by Warschauer & Healey (1998) still hold true for a wide range of 
currently available and future possible tools, notwithstanding revisions suggested by Bax 
(2002). However, the rapid development of Artificial Intelligence (AI) in recent years may 
soon require whole new ways of thinking about CALL applications, and the language 
learning theories that underpin them. 
 
Small scale innovation and experimentation can lead to world-changing breakthroughs. Even 
on the occasions that it does not, it is nevertheless a valuable learning experience, and can 
provide avenues for further research and experimentation. Individuals with some knowledge 
of HTML and CSS can easily begin making web applications, and the vast range of libraries, 
frameworks, and APIs available make sophisticated and powerful features available to coder-
educators.  
 
There is a wide range of free resources for learning to code, and although the investment of 
time and energy required to do so is significant, the rewards are worthwhile. The next 
generation of web-based CALL applications should be based on proven principles and 
innovative practices. Who better to be involved in the design and development process than 
language teachers themselves? 
 

 
 
ACKNOWLEDGEMENTS 
 
The author gratefully acknowledges the helpful comments and suggestions of Todd Cooper and 
Brian Gallagher. 
 
 
REFERENCES 
 
Adobe. (2017). Flash & The Future of Interactive Content. Retrieved from 

https://theblog.adobe.com/adobe-flash-update/ 



CALL-EJ, 19(2), 125-138 
 

136 
 

Adkins, S. S. (2016). The 2015-2020 Worldwide Digital English Language Learning Market. 
Retrieved from 
http://www.ambientinsight.com/Resources/Documents/AmbientInsight_2015-
2020_Worldwide_Digital_English_Market_Sample.pdf 

AlKhayat, A. (2017). Exploring The Effectiveness of Using Chatbots in the EFL classroom. In 
Teaching English Reflectively with Technology, 20-36. 

Bañados, E. (2006). A blended-learning pedagogical model for teaching and learning EFL 
successfully through an online interactive multimedia environment. Calico Journal, 23(3), 
533-550. 

Bax, S. (2003). CALL—past, present and future. System, 31(1), 13-28. 
Blake, R. J. (2013). Brave new digital classroom: Technology and foreign language learning. 

Georgetown University Press. 
Carey, M. (2004). CALL visual feedback for pronunciation of vowels: Kay Sona-Match. CALICO 

Journal, 21(3), 571-601. 
Clark, C. & Gruba, P. (2010). The use of social networking sites for foreign language learning: An 

autoethnographic study of Livemocha. In C.H. Steel, M.J. Keppell, P. Gerbic & S. Housego 
(Eds.), Curriculum, technology & transformation for an unknown future. Proceedings 
ascilite Sydney 2010, 164-173. 

 Daniels, P., & Iwago, K. (2017) The suitability of cloud-based speech recognition engines for 
language learning. JALT CALL Journal, 13(3), 229-239. 

Durkin, H. (2016). Browsers, not apps, are the future of mobile. Retrieved from 
https://medium.com/swlh/browsers-not-apps-are-the-future-of-mobile-c552752ff75 

EdSurge. (2016). Rosetta Stone to Shut Down Language Learning Service, Livemocha. Retrieved 
from https://www.edsurge.com/news/2016-03-23-rosetta-stone-to-shut-down-language-
learning-service-livemocha 

Finocchiaro, M., & Brumfit, C. (1983). The functional-notional approach: From theory to 
practice. Oxford University Press. 

Fryer, L. K., & Carpenter, R. (2006). Bots as language learning tools. Language Learning & 
Technology, 10(3), 8-14. 

Giesbrecht, E., & Evert, S. (2009). Is part-of-speech tagging a solved task? An evaluation of POS 
taggers for the German web as corpus. In Proceedings of the fifth Web as Corpus workshop, 
27-35. 

Godwin-Jones, R. (2011). Mobile Apps for Language Learning. Language Learning & 
Technology, 15(2), 2-11. Retrieved from http://llt.msu.edu/issues/june2011/emerging.pdf 

Gonzales, D. (2007). Text-to-Speech Applications Used in EFL Contexts to Enhance 
Pronunciation. TESL-EJ, 11(2). Retrieved from http://tesl-ej.org/ej42/int.html.bu2 

Guliani, P. (2016). Duolingo Looks to Dominate the Mobile Education Market with New 
Flashcard App TinyCards. Retrieved from 
https://www.forbes.com/sites/parulguliani/2016/07/22/duolingo-looks-to-dominate-the-
mobile-education-market-with-new-flashcard-app 

Handley, Z. (2009). Is text-to-speech synthesis ready for use in computer-assisted language 
learning? Speech Communication, 51(10), 906-919. 

Healey, D. (2016). Language learning and technology: Past, present and future. In F. Farr & L. 
Murray (Eds.) The Routledge handbook of language learning and technology, (pp. 9-23). 
Routledge. 

Heift, T. (2004). Corrective feedback and learner uptake in CALL. ReCALL, 16(2), 416-431. 



CALL-EJ, 19(2), 125-138 
 

137 
 

Heller, M. (2017). What is Node.js? The JavaScript runtime explained. Retrieved from 
https://www.infoworld.com/article/3210589/node-js/what-is-nodejs-javascript-runtime-
explained.html 

Hampel, R. (2006). Rethinking task design for the digital age: A framework for language teaching 
and learning in a synchronous online environment. ReCALL, 18(1), 105-121. 

Internet World Stats. (2017). Internet Usage Statistics. Retrieved from 
http://www.internetworldstats.com/stats.htm 

Iyer, B., & Subramaniam, M. (2015). The Strategic Value of APIs. Retrieved from 
https://hbr.org/2015/01/the-strategic-value-of-apis 

Jia, J. (2004). The study of the application of a web-based chat-bot system on the teaching of 
foreign languages. In Society for Information Technology & Teacher Education 
International Conference, 1201-1207. 

Jobs, S. (2007). “Keynote Address.” Apple Worldwide Developers Conference, 11 June 2007, 
Moscone West, San Francisco, CA. 

Jobs, S. (2010). Thoughts on Flash. Retrieved from https://www.apple.com/hotnews/thoughts-on-
flash 

Kiss, J. (2007). The Nutshell: A beginners' guide to APIs. Retrieved from 
https://www.theguardian.com/media/pda/2007/dec/14/thenutshellabeginnersguide 

Lumiaho, L. (2015). Five Ways of Connecting People, Devices, and Systems with WebRTC. 
Retrieved from https://www.callstats.io/2015/06/05/five-ways-of-connecting-with-webrtc/ 

Miyazoe, T., & Anderson, T. (2010). Learning outcomes and students' perceptions of online 
writing: Simultaneous implementation of a forum, blog, and wiki in an EFL blended 
learning setting. System, 38(2), 185-199. 

Moussalli, S., & Cardoso, W. (2016). Are commercial ‘personal robots’ ready for language 
learning? Focus on second language speech. In S. Papadima-Sophocleous, L. Bradley & S. 
Thouësny (Eds.), CALL communities and culture – short papers from EUROCALL 2016, 
325-329.  

Nguyen, H. & Ishitobi, N. (2012). Ordering Fast Food: Service Encounters in Real-Life Interaction 
and in Textbook Dialogs. JALT Journal, 34(2), 151-186. 

Oiler, J. W., & Conrad, C. A. (1971). The cloze technique and ESL proficiency. Language 
Learning, 21(2), 183-194. 

Ono, T., & Raine, P. (2016). Apps 4 EFL: Synchronous Learning through Real Time. Annual 
Report of JACET SIG on ESP, 18, 38-41. 

Oroz, G. (2015). How long does it actually take to learn to code? Retrieved from 
http://gergelyorosz.com/2015/09/how-long-does-it-actually-take-to-learn-to-code/ 

Pellegrini, T., Costa, Â., & Trancoso, I. (2012). Less errors with TTS? A dictation experiment with 
foreign language learners. In INTERSPEECH-2012, 1291-1294. 

Raine, P. (2017). Web-based language learning with creative commons data. Accents Asia, 9(2), 
41-55. 

Richter, F. (2016). The Web Is Turning Its Back on Flash. Retrieved from 
https://www.statista.com/chart/3796/websites-using-flash/ 

Salter, P. (2017). Busuu is breaking down language barriers in nearly every country across the 
world. Retrieved from http://www.cityam.com/268678/busuu-breaking-down-language-
barriers-nearly-every-country 



CALL-EJ, 19(2), 125-138 
 

138 
 

Shih, R. C. (2011). Can Web 2.0 technology assist college students in learning English writing? 
Integrating Facebook and peer assessment with blended learning. Australasian Journal of 
Educational Technology, 27(5), 829-845. 

Statistica. (2017). Number of apps available in leading app stores as of March 2017. Retrieved 
from https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-
stores. 

Statistica. (2018). Number of smartphone users worldwide from 2014 to 2020 (in billions). 
Retrieved from https://www.statista.com/statistics/330695/number-of-smartphone-users-
worldwide 

Stenberg, D. (2011). History of IRC (Internet Relay Chat). Retrieved from 
https://daniel.haxx.se/irchistory.html 

Underwood, J. (2017). Exploring AI language assistants with primary EFL students. In K. 
Borthwick, L. Bradley & S. Thouësny (Eds.), CALL in a climate of change: adapting to 
turbulent global conditions–short papers from EUROCALL 2017, 317-321. 

Vesselinov, R. & Grego, J. (2012). Duolingo Effectiveness Study. Retrieved from 
http://static.duolingo.com/s3/DuolingoReport_Final.pdf 

Warschauer, M., & Healey, D. (1998). Computers and language learning: An overview. Language 
Teaching, 31(2), 57-71. 


